Estimation of homing distance in desert ants, Cataglyphis fortis, remains unaffected by disturbance of walking behaviour.
نویسندگان
چکیده
Desert ants, Cataglyphis fortis, use a stride integrator as a distance gauge in their well-studied path integration system (while a skylight compass provides the direction gauge). To further scrutinize the mechanisms of the ant odometer, we tried to disturb the stride integrator by interfering with normal walking behaviour. First, legs that contribute to one of the two leg tripods alternately used in normal walking were selectively amputated. This prevented the normal tripod gait and should interfere with both the normal walking programme controlled by the central nervous system, and normal sensory feedback from the legs. Second, manipulation of the walking substrate in the form of regular corrugations was observed to interfere with normal walking behaviour, at least for corrugation wavelengths (12-25 mm) in the range of normal stride lengths. The animals fell and stumbled, or footfall patterns were entrained to the corrugation wavelength. The relationship between stride length and stride frequency was altered in several situations. Surprisingly, distance estimation and homing performance remained virtually unaffected even by the most severe interferences with walking behaviour. This demonstrates a remarkable robustness of walking behaviour and homing, and it suggests that stride length is determined by robust signals of leg sense organs.
منابع مشابه
How to find home backwards? Navigation during rearward homing of Cataglyphis fortis desert ants.
Cataglyphis ants are renowned for their impressive navigation skills, which have been studied in numerous experiments during forward locomotion. However, the ants' navigational performance during backward homing when dragging large food loads has not been investigated until now. During backward locomotion, the odometer has to deal with unsteady motion and irregularities in inter-leg coordinatio...
متن کاملFlexible weighing of olfactory and vector information in the desert ant Cataglyphis fortis
Desert ants, Cataglyphis fortis, are equipped with remarkable skills that enable them to navigate efficiently. When travelling between the nest and a previously visited feeding site, they perform path integration (PI), but pinpoint the nest or feeder by following odour plumes. Homing ants respond to nest plumes only when the path integrator indicates that they are near home. This is crucial, as...
متن کاملHair plate mechanoreceptors associated with body segments are not necessary for three-dimensional path integration in desert ants, Cataglyphis fortis.
In formicine ants, the hair fields associated with the neck and the petiole (alitrunk-petiole and petiole-gaster joints) have long been established to function in graviception. Here, we examine a possible role of these hair receptors in three-dimensional (3-D) path integration of the (formicine) desert ant, Cataglyphis fortis. Cataglyphis judge the ground distance when travelling over hills, al...
متن کاملThe desert ant odometer: a stride integrator that accounts for stride length and walking speed.
Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail....
متن کاملPath integration in a three-dimensional maze: ground distance estimation keeps desert ants Cataglyphis fortis on course.
In this study, we investigate the ability of desert ants to gauge the ground distances of sloped sections in a three-dimensional (3D) outbound path. Ground distance estimation, as opposed to a simple measurement of walking distances, is a necessary prerequisite for precise path integration in undulating terrain. We trained ants to visit a feeder along a path that included an angular turn as wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 212 18 شماره
صفحات -
تاریخ انتشار 2009